欢迎访问高中学习网!设为首页  |  加入收藏 | 最新文章
当前位置:高中学习网 >> 高中数学 >> 高中数学解题技巧 >> 浏览文章

浅谈高中数学排列组合应用题解题技巧

核心导读:  排列组合问题是各类学校数学教学的难点内容之一。排列组合问题的内容比较抽象,解题方法比较灵活,很多学生感到学起来很困难,尤其在解应用题时不知从何入手。针对上述情况,本文就通过一些实例来总结实际应用中的解题技巧。

  排列组合问题是各类学校数学教学的难点内容之一。排列组合问题的内容比较抽象,解题方法比较灵活,很多学生感到学起来很困难,尤其在解应用题时不知从何入手。针对上述情况,本文就通过一些实例来总结实际应用中的解题技巧。

  1.排列的定义:从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

  2.组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合。

  3.排列数公式:

  4.组合数公式:

  5.排列与组合的区别与联系:与顺序有关的为排列问题,与顺序无关的为组合问题。

 

  例1  学校组织老师学生一起看电影,同一排电影票12张。8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法?

  分析 此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待。所涉及问题是排列问题。

  解  先排学生共有种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有种选法。根据乘法原理,共有的不同坐法为种。

  结论1  插入法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法。即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可。

  例2  5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?

  分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题。

  解    因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有种排法,其中女生内部也有种排法,根据乘法原理,共有种不同的排法。

  结论2   捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题。即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。

  例3   高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?

  分析 此题若直接去考虑的话,就会比较复杂。但如果我们将其转换为等价的其他问题,就会显得比较清楚,方法简单,结果容易理解。

  解   此题可以转化为:将12个相同的白球分成8份,有多少种不同的分法问题,因此须把这12个白球排成一排,在11个空档中放上7个相同的黑球,每个空档最多放一个,即可将白球分成8份,显然有种不同的放法,所以名额分配方案有种。


欢迎转载!转载时请附上原文地址:http://www.gaozhong.cc/shuxue/jiqiao/349.html
上一篇文章:学习数列通项公式应注意的几个问题
下一篇文章:高中数学解题的技巧

关闭