欢迎访问高中学习网!设为首页  |  加入收藏 | 最新文章
当前位置:高中学习网 >> 高中数学 >> 高中数学知识点总结 >> 浏览文章

框图与复数

核心导读:一、教学内容:框图与复数   二、学习目标 能用框图梳理已学过的知识,了解框图在揭示事物联系中的作用;理解复数的有关概念,能进行复数的加、减、乘、除运算;掌握某些特殊复数的运算特征及复数的几何意义。   三、考点分析 1、知识结构: (1)流程图:表示一系列活动相互作用、相互制约的顺序的框图称为流程图。 (2)结构图:表示一个系统中各部分之间的组成结构的框图叫做结构图。 2、复数集 应特别注意,a a=a 若两个复数a1 b1

一、教学内容:框图与复数

 

二、学习目标

能用框图梳理已学过的知识,了解框图在揭示事物联系中的作用;理解复数的有关概念,能进行复数的加、减、乘、除运算;掌握某些特殊复数的运算特征及复数的几何意义。

 

三、考点分析

1、知识结构:

(1)流程图:表示一系列活动相互作用、相互制约的顺序的框图称为流程图。

(2)结构图:表示一个系统中各部分之间的组成结构的框图叫做结构图。

2、复数集

< 1275510574">

应特别注意,a a=a 若两个复数a1 b1z2=b2(1)加法:z2=(a2) (b2)(2)减法:z2=(a2) (b1-i;

(3)乘法:z2=(a2-b2) (b2 b1)(4)除法

(5)四则运算的交换率、结合率、分配率都适合于复数的情况。

(6)特殊复数的运算:

< 1275510577"> (i)2=±2③ 若ω=- i,则ω3=1,1 ω ω2=0.

4、共轭复数与复数的模

(1)若a bi,则 为纯虚数((2)复数a bi的模,| , 且 =b2.

注:复数bi的共轭复数是bi,若两复数是共轭复数,则它们所表示的点关于实轴对称。若a与实数a bi的模的几何意义是指表示复数bi的点到原点的距离。

 

【典型例题

例1当z=m2 3i;

(1)是实数;(2)是虚数;(3)是纯虚数.

解:此题主要考查复数的有关概念及方程(组)的解法.

(1)m2 3

解得m=2时,(2)m2 3

解得m≠±5. 当m≠2且z为虚数.

(3)

解得m=- 时,诠释:本题应抓住复数分别为实数、虚数、纯虚数时必须具备的相应条件,还应特别注意分母不为零这一要求.

 

例2(1) 使不等式m2-3i<(m2-4m+3)m= .

解:此题主要考查复数能比较大小的条件及方程组和不等式的解法.

∵ m2-3m)i<(m+3)∴

注:本题应抓住复数能比较大小时必须都为实数这一条件。

(2) 已知x+x,R),且 z.

解:本题主要考查复数相等的充要条件及指数方程,对数方程的解法.

,∴

解得 , ∴ i或i.

注:本题应抓住复数相等的充要条件这一关键点,正确、熟练地解方程(指数,对数方程)

 

例3若复数z=t∈z的对应点Z的轨迹方程.

解:此题主要考查复数的四则运算,点的轨迹方程的求法等.

设x+x, R),∵ =

,消去参数 x2+x≠-1.

∴ 所求z的轨迹方程为y2=1(诠释:解此题应抓住复数相等的充要条件,从而得到参数方程,消去参数,或者利用模的定义和性质,求出|例4设计一个计算解:算法:

第一步:S=1;

第二步:i=3 ;

第三步:第四步: i=i 2;

第五步:如果 ,那么转到第三步;

第六步:输出S.

算法流程图:(如图所示)

 

例5用框图描述你所了解的数系中各成分间的关系

解:

 

【模拟试题

一、选择题(本大题共6小题,每小题5分,共30分)

1、设条件甲:x+x,y∈R)是纯虚数,则( )

A、甲是乙的充分非必要条件 B、甲是乙的必要非充分条件

C、甲是乙的充分必要条件 D、甲是乙的既不充分,又不必要条件

2、已知关于x的方程i-1)m-i=0有实根,则实数m应取的值是( )

A、m≤- C、m=m=- 等于( )

A、0 B、1 C、-1 D、f(z|- ,若i,则A、5+3i B、5-3i C、-5+3i

5、方程x2+(i)ki=0至少有一实根的条件是( )

A、-2 ≤k≤-2 或C、k≠2

6、若2+3i是方程x2 n=0的一个根,则实数n的值为( )

A、n=-3 B、n=13

C、n=-21 D、n=-5

 

二、填空题(本题共4小题,每小题5分,共20分)

7、已知下列命题:

(1)在复平面中,y轴是虚轴;

(2)任何两个复数不能比较大小;

(3)任何数的偶次幂都是非负数;

(4)若 si=3-4t=3、其中真命题为 .

8、若复数z满足i,则z∈C,|z i|的最大值为 .

10、一般地,对于树状结构图,下位比上位________,上位比下位___________;

 

三、解答题(本大题共4题,共50分)

11、设 是纯虚数,求复数z满足|i)z.

13、某软件公司欲设计一个信息管理系统,希望系统具备以下功能:

(1)用户管理:修改密码、显示信息、修改信息;

(2)用户登录;

(3)信息管理:删除、添加、修改、查询;

(4)错误信息处理.

据此画出该系统的结构图.

14、观察下面的过程,回答问题:

因为

所以(1)上面的计算求的是什么?

(2)根据上面的例子归纳出算法,并画出流程图。

 

 

【试题答案】

1、B 2、C 3、A 4、B 5、C 6、B

7、(1)

8、- 2i

9、3

10、具体, 抽象(其他类似正确答案也可)

11、解:此题主要考查复数的有关概念及性质,四则运算和点的轨迹方程的求法.

是纯虚数,∴ ,

z z≠0,z≠-1),

设x+x,R),2(y2)+2y≠0)

∴ (x+ 2+y≠0)即为复数z对应的点的轨迹方程.

诠释:解此题应抓住虚数的定义和共轭复数的性质,利用运算法则进行求解。

12、解:此题主要考查复数的有关概念,复数的运算,模的定义及计算.

设 x+x, R), ∵|z|=5,

∴y2=25, 又(3+4z=(3+4i)(x+x-4x+3i是纯虚数,

, 联立三个关系式解得

∴ i或z=-4-3

14、解:(1)计算的是2006和1600的最大公约数

(2)设置两个数,较大数为m,较小数为n,

第一步,计算m除n的余数r;

第二步,除数变成被除数,余数变成除数

第三步,回到第一步,直到余数为0


欢迎转载!转载时请附上原文地址:http://gaozhong.cc/shuxue/zhishidian/451.html
上一篇文章:直线与圆的位置关系二
下一篇文章:如何快速掌握高中数学知识点技巧

关闭